

K.S.R. COLLEGE OF ENGINEERING

(Autonomous)

Affiliated to Anna University Chennai & Approved by AICTE

ACCREDITED BY NAAC WITH A++ GRADE AND ELIGIBLE COURSES ACCREDITED BY NBA

K.S.R Kalvi Nagar, Tiruchengode 637 215, Namakkal Dt. Tamilnadu

TRONIX

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

MAR-2023

K.S.R. COLLEGE OF ENGINEERING

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai.

An ISO 9001: 2008 Certified Institution.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

TRONIX – 2023

TECHNICAL MAGAZINE

ACADEMIC YEAR 2022 – 2023

VISION OF THE INSTITUTE

We envision to achieve status as an excellent educational institution in the global knowledge hub, making self-learners, experts, ethical and responsible engineers, technologists, scientists, managers, administrators and entrepreneurs who will significantly contribute to research and environment friendly sustainable growth of the nation and the world.

MISSION OF THE INSTITUTE

To inculcate in the students self-learning abilities that enable them to become competitive and considerate engineers, technologists, scientists, managers, administrators and entrepreneurs by diligently imparting the best of education, nurturing environmental and social needs. To foster and maintain a mutually beneficial partnership with global industries and Institutions through knowledge sharing, collaborative research and innovation.

VISION OF THE DEPARTMENT

We envision as a center of excellence in the field of Electronics and Communication Engineering to produce technically competent graduates with diverse teaching and research environments.

MISSION OF THE DEPARTMENT

- To educate the students with the state of art technologies to meet the growing challenges of the industries.
- To develop an innovating, competent and ethical Electronics and Communication Engineer with strong foundations to enable them for continuing education.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

The Program Educational Objectives of B.E. - Electronics and Communication Engineering

Department are:

PEO 1	EMPLOYABILITY AND HIGHER EDUCATION: Excel in professional career and higher education by acquiring knowledge in mathematical, social, scientific & engineering principles.
PEO 2	CORE COMPETENCE: Analyze, design and develop/implement core engineering problems in communication systems that are technically sound, economically feasible and socially acceptable.
PEO 3	INTERPERSONAL SKILLS AND TEAM WORK: Exhibit professionalism, ethical communicating skills and team work by engaging in lifelong learning for sustainable development of the society.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

PSO 1	PROFESSIONAL SKILL: Specify, design and test modern electronic systems that perform analog and digital processing functions.
PSO 2	PROBLEM – SOLVING SKILLS: Design essential elements (circuits and antennas) of modern RF/Wireless communication systems.

PROGRAMME OUTCOMES (POS)

Graduates of Electronics and Communication Engineering Programmed will be able to

PO 1	ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	PROBLEM ANALYSIS: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resource, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	THE ENGINEER AND SOCIETY: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	ENVIRONMENTAL AND SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	ETHICS: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader diverse teams, and in multidisciplinary settings.
PO 10	COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Founder's Message

TRONIX பத்திரிகை ஆனது மாணவர்கள் மற்றும் ஆசிரியர்களிடையே உள்ளார்ந்த திறமைகளை வெளிக்கொணர்வதை நோக்கமாகக் கொண்டுள்ளது.

இந்த இதழ் ஒரு நேர்மறையான சமிக்ஞையை அனுப்பும்

என்று நான் நம்புகிறேன்.

இதுபோன்ற ஒரு அற்புதமான பத்திரிகையை வெளிக்கொணர்ந்த அனைத்து பங்களிப்பாளர்களையும் வாழ்த்துகிறேன்.

FOUNDER & CHAIRMAN

Lion. Dr. K.S. Rangasamy, MJF.,

Chairman's Message

It gives me immense pleasure to pen a few words as prologue to the bi annual department magazine TRONIX exclusively meant for churning out the talent writing talent which bears immense potentiality of sharpening the student skills as part of their overall personality development. I congratulate all the contributors for bringing out such a beautiful magazine.

Vice - Chairman

Mr. R. Srinivasan, B.B.M., MISTE.,

PRINCIPAL MESSAGE

I congratulate the department of ECE for bringing the prestigious bi annual department magazine, TRONIX.

I am sure that the magazine will provide a platform to the students and faculty members to expand their technical knowledge and sharpen their hidden literary talent. I am hopeful that this small piece of literary work shall not only develop the taste for reading among students but also develop sense of belonging to the institution as well. My congratulations to the editorial board took the responsibility for the arduous task most effectively. I extend best wishes for the success of this endeavor.

PRINCIPAL

Dr. P. Senthil Kumar M.E., Ph.D.,

MESSAGE FROM CONTROLLER OF EXAMINER

I am extremely happy that our department magazine TRONIX has come out very well. This magazine reflects the state of art of the department, highly qualified faculty and most prolific students. The magazine has helped in bringing out the creative instinct of the students and their proficiency. I am very happy to be a part of this magazine. I congratulate all the faculty and students in making this magazine a success.

**Dr. P.S.PERIASAMY
PROF/COE**

MESSAGE FROM THE CHIEF EDITOR

The HOD of ECE take great honour in congratulating the students who have contributed for the current year's Evolve magazine TRONIX. I really hope that this would be as useful as the last Evolve editions. Acknowledging the fact that the magazine is completely created and designed by the students I really hope this would kindle a spark in the minds of the students who are yet to contribute towards the progress of the Evolve Initiative in the upcoming years. All the best students!

Dr.C.GOWRISHANKAR**PROF/HEAD****HOD-ECE****EDITORIAL BOARD:****STAFF MEMBERS****Mrs.P.USHA, AP/ECE****Mrs.S.SRIDEVI, AP/ECE****STUDENT MEMBERS****Mr. PARTHASARATHY S, I /ECE****Mr. SRIVARSHAN R, I /ECE**

INDEX

S.NO	NAME OF THE ARTICLE	PAGE NO
1.	PATIENCE	2
2.	3D PRINTING REVOLUTIONIZING INDUSTRIES	3
3.	AI TECHNOLOGY IN THE ECE DEPARTMENT	5
4.	TRENDS IN EMBEDDED SYSTEM	6
5.	CLOUD COMPUTING	8
6.	INFERRING THE FUTURE OF MACHINE LEARNING	10
7.	HOW AI IS TRANSFORMING THE AEROSPACE TECHNOLOGY	11
8.	INTERNET OF THINGS (IoT)	13
9.	ROBOTIC PROCESS AUTOMATION (RPA)	15
10.	ORGANIC ELECTRONICS	17
11.	WIGIG TECHNOLOGY	18
12.	UNLOCKING INSIGHTS THROUGH DATA VISUALIZATION	20
13.	WIRELESS SENSOR NETWORK	21
14.	USING A GSM MODULE WITH AN ARDUINO	23
15.	AUTOMATION	24
16.	CHANDRAYAAN-3	26
17.	GREEN COMMUNICATION	28
18.	THE GREAT SANGAM POET	30
19.	TOSHIRO HITSUGAYA	31

PATIENCE

"TO LOSE PATIENCE IS TO LOSE THE BATTLE"

-MAHATMA GANDHI

PATIENCE IS ONE OF THE MOST VALUABLE VIRTUES OF LIFE. THE POWER OF PATIENCE HELPS YOU EMPOWER YOUR LIFE LEADING TO WISDOM AND SUCCESS. SUCCESS BREEDS HAPPINESS AND HAPPINESS IS THE PRODUCT OF HARD WORK AND PATIENCE. TO CULTIVATE THE PATIENCE IS TO GAIN THE REFINED SENSE OF CONFIDENCE, SO THAT YOU MAY HAVE REMEDY FOR EVERY TROUBLE, SOLUTION TO THE PROBLEMS AND COURAGE FOR SORROWS OF LIFE. PATIENCE IS NOT JUST A TRAIT, BUT IT'S A SKILL THAT NEEDS TO BE DEVELOPED. THUS, DEVELOPING A GOOD DEAL OF PATIENCE IS LEADING A SATISFYING LIFE.

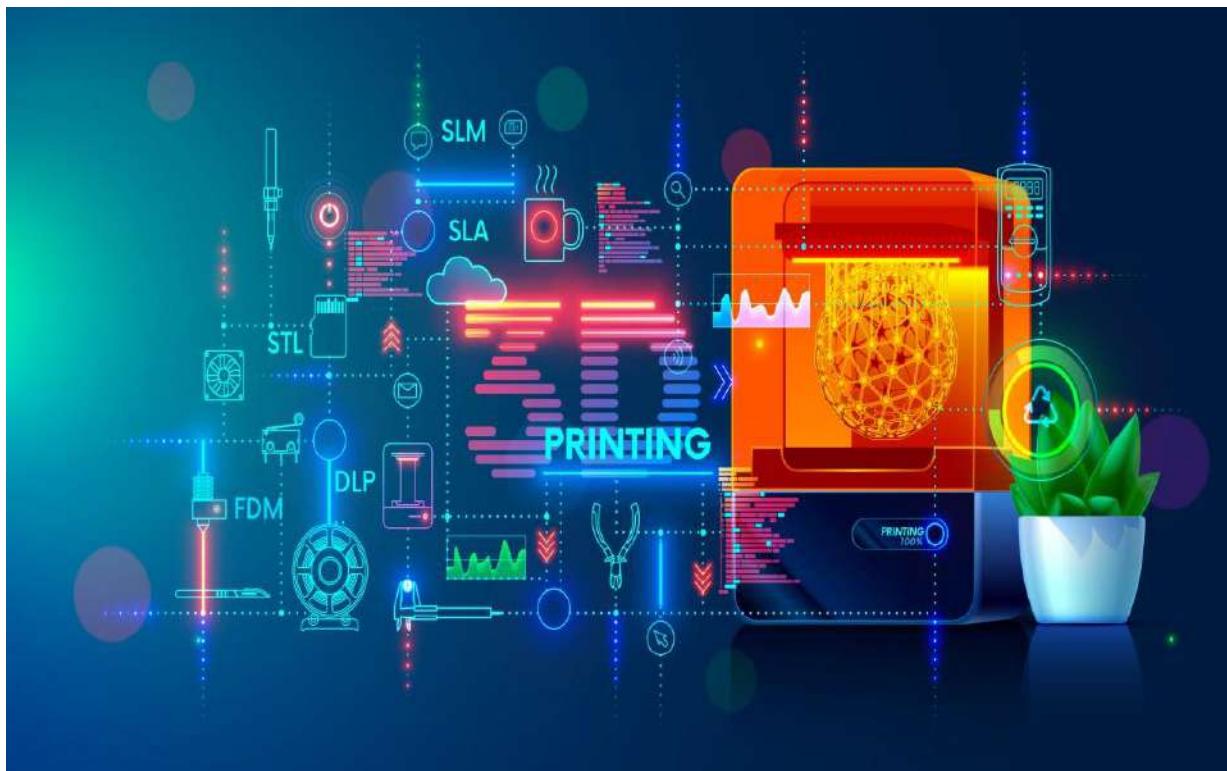
"PATIENCE, PERSISTENCE AND PERSPIRATION MAKE AN UNBEATABLE COMBINATION FOR SUCCESS."

-NAPOLEAN HILL

THE POWER OF PATIENCE IS ONE OF THE MAJOR COMPONENTS OF SUCCESS. IF YOU DEVELOP PATIENCE, IT BRINGS RICH REWARDS, SUCH AS, PERSONAL GROWTH, INCREASING THE ABILITY TO GAIN MORE INSIGHTS AND UNDERSTANDING, IT BUILDS A STRONG CHARACTER LEADING YOU TO A PEACEFUL LIFE. THUS, WE SHOULD CONTINUOUSLY REMIND OURSELVES THIS SAYING,

•
•
•
•

"PATIENCE IS BITTER,
BUT ITS FRUIT IS SWEET."
-ARISTOTLE.


MANIKANDAN S J
73152115048
III ECE-'A'

3D PRINTING REVOLUTIONIZING INDUSTRIES

The world of manufacturing and design is experiencing a seismic shift with the advent of 3D printing technology. This innovative process, also known as additive manufacturing, has evolved from a niche concept to a powerful force reshaping industries globally.

In the early 1980s, Charles Hull pioneered 3D printing with stereolithography. Since then, 3D printing technologies have diversified, including Fused Deposition Modeling (FDM), Stereolithography (SLA), and Selective Laser Sintering (SLS). Today, it is used in diverse sectors, with a transformative impact.

One of the most remarkable applications is in healthcare. 3D printing enables the creation of customized prosthetics, implants, and even the potential to print functional human organs, promising new hope for patients. In aerospace, manufacturers utilize 3D printing for lightweight, high-performance components, reducing fuel consumption and environmental impact. The automotive industry benefits from rapid prototyping and intricate part production. In fashion and design, it fosters unique creations, and in architecture, it constructs models and even buildings with precision.

The advantages of 3D printing are abundant—cost-effectiveness through reduced waste and tooling costs, customization catering to individual needs, rapid prototyping accelerating product development, and the ability to create complex geometries previously unattainable.

However, challenges persist, such as material limitations, time-consuming large-scale production, and concerns regarding intellectual property rights and counterfeiting.

As we look ahead, the future of 3D printing holds promise. Advancements in bioprinting could revolutionize healthcare, while its potential in space exploration and sustainable manufacturing could reshape these industries.

Name: Nithyasri M

Department: ECE

AI TECHNOLOGY IN THE ECE DEPARTMENT

Overview of AI

Artificial Intelligence (AI) has emerged as a revolutionary technology across various industries, transforming the way we live, work, and interact. In the field of Electrical and Computer Engineering (ECE), AI has made significant strides, opening new possibilities and applications. This article will explore the impact of AI in the ECE department and its potential for further innovation.

Evolution of AI

One area where AI has made a profound impact is in autonomous systems. ECE researchers are developing intelligent machines and robots that can perform tasks without human intervention. These autonomous systems rely on AI algorithms to analyze sensory inputs and make decisions in real-time. Applications range from self-driving cars and drones to industrial automation and smart homes. AI enables these systems to adapt to changing environments, improve safety, and enhance efficiency.

Furthermore, AI plays a crucial role in the design and optimization of complex electronic circuits and systems. ECE engineers are utilizing AI algorithms to develop intelligent tools for circuit design and optimization. Machine learning algorithms can automatically explore the design space and generate optimized solutions, reducing the time and effort required. This enables faster development cycles and more efficient electronic systems.

AI also enhances the capabilities of communication systems in the ECE department. With the advent of 5G and beyond, the demand for high-speed and reliable wireless communication is increasing. AI algorithms can be utilized to optimize the allocation of network resources, improve signal quality, and mitigate interference. Additionally, AI based signal processing techniques enable efficient data compression, reducing bandwidth requirements and enabling faster data transmission.

Name: Thivvasri R

TRENDS IN EMBEDDED SYSTEM

An Overview:

Technology trends are accelerating, and devices have developed into distinctive qualities that fit in many categories and sectors, including embedded. Due to its outcomes being application-oriented and advance development areas in focus, embedded systems and devices will gain more popularity in the coming future while considering various business sectors and their applications. Let us see recent trends under embedded systems.

System on Chip (SoC):

System on Chip (SoC) solution is another new trend in embedded system technology. Many businesses provide SoC based embedded devices, and among these solutions is the market delivery of analog and mixed-signal integrated circuits as a popular one. ASIC with great performance, small size, low cost, and IP protection is one such solution. Due to their size, weight, and power performance, it is very popular for application specific system needs.

Wireless technology:

The primary goal of building wireless embedded software solutions is information transmission and reception. The wireless embedded system plays an important role where physical connections are impossible in any setting, and the use of IoT peripherals and devices becomes vital. With the technological advances in the areas of wireless solutions like Z-Wave, Bluetooth, Wi-Fi, and ZigBee the applicability of embedded wireless systems has drastically increased.

Automation:

Every system in use today is becoming more automated. Every sector of growth has some level of automation, largely due to developments in computers, robots, and advancement in intelligent technologies like artificial intelligence and machine learning. The usage of embedded devices speeds up the connection of multiple storage components and can easily link up with cloud technology to power the device's quick expansion of cognitive processing. The applications based on facial recognition and vision solution offers benefits like image identification & capturing, image processing, post processing, etc., and alerting for security in real time. For example, a smart factory outfitted with IoT, and artificial intelligence can significantly boost productivity by monitoring operations in real time and allowing AI to make decisions that prevent operational errors.

Name: Ranjith Kumar B S

Department: ECE

CLOUD COMPUTING

Cloud computing is a term that refers to the delivery of computing services over the internet, such as servers, storage, databases, software, analytics, and more. Cloud computing allows users to access these services on demand, without having to manage or own the physical infrastructure. Cloud computing also offers benefits such as cost savings, scalability, performance, reliability, and security.

There are different types of cloud computing, depending on how the services are deployed and delivered. The main types are:

- **Public cloud:** The cloud provider owns and operates the infrastructure and offers services to anyone who wants to use them. Examples of public cloud providers are Microsoft Azure1, Google Cloud2, and Amazon Web Services.
- **Private cloud:** The cloud infrastructure is dedicated to a single organization and is not shared with others. The organization can either manage the infrastructure itself or hire a third-party provider to do so. Private clouds offer more control and security, but also require more investment and maintenance.
- **Hybrid cloud:** The cloud infrastructure is a combination of public and private clouds, connected by a network. This allows the organization to use the best of both worlds, depending on the needs and preferences of each application or service.
- **Community cloud:** The cloud infrastructure is shared by a group of organizations that have common goals or interests, such as security, compliance, or mission. The infrastructure can be managed by one or more of the organizations or by a third-party provider.

Name: Swetha D

Department: ECE

INFERRING THE FUTURE OF MACHINE LEARNING

An Overview:

Machine learning is programming computers to optimize a performance criterion using example data or past experience. We have a model defined up to some parameters, and learning is the execution of a computer program to optimize the parameters of the model using the training data or past experience. The model may be predictive to make predictions in the future, or descriptive to gain knowledge from data.

The field of study known as machine learning is concerned with the question of how to construct computer programs that automatically improve with experience.

Future of Machine learning

Deep-learning networks have won. They have outscored humans in classifying still images—at least sort-of. They have defeated world champions at chess and go. They have become the tool of choice for big-data analysis challenges, from customer service to medical diagnosis. They have shown that, once trained, they can be compact enough to fit in a smart phone. So have we reached the end of history for artificial intelligence (AI)? Or is this just the crest of one wave in a much larger ocean?

One answer to that question might come from the plethora of other approaches to AI now jostling for attention. Granted there are always alternatives to a successful technology, if only because every PhD candidate has to find something unique to write about, and every patent has to be circumvented. But many of the alternatives to deep-learning networks today have grown over time out of real issues with conventional static networks like AlexNet. Many are solving real problems and showing up in production systems. A system that incorporates machine intelligence, look before you leap.

Name: Vignesh C K

HOW AI IS TRANSFORMING THE AEROSPACE TECHNOLOGY

- ✓ AI (Artificial Intelligence) is a simulation of the human mind processes by machines, especially computer systems.
- ✓ Specific applications of AI include specialized systems, natural language processing, speech recognition, and computer vision.
- ✓ AI (Artificial Intelligence) broadly refers to any human-like behavior displayed by the machine or system.
- ✓ In AI's simplest form, computers are programmed to "mimic" human behavior using comprehensive data from past examples of similar behavior.
- ✓ This can vary from recognizing differences between a cat and a bird to execute complex activities in a factory environment.
- ✓ AI systems work by consuming copious amounts of labeled training data, analyzing the data for relationships and models, and using these models to make predictions on future states.
- ✓ In this way, a chatbot powered examples of text chats can learn to produce realistic exchanges with people, or an image recognition tool can learn how to identify and describe objects in images by looking at millions of examples.
- ✓ AI programming has been focused on three cognitive skills: learning, reasoning, and self-correction.
- ✓ AI is important as it can give businesses insights into their operations that they may not have been aware of in the past. In certain cases, AI can perform tasks better than human beings.
- ✓ Especially in repetitive, meticulous tasks like analyzing large numbers of legal documents to ensure the appropriate fields are filled in properly, AI tools often complete jobs quickly with a few mistakes.
- ✓ Today, AI makes it possible to improve the customer experience through automation and self-service solutions, optimize employee workflow, and ensure higher air safety with analytical and prescriptive aircraft maintenance. It also allows

airlines to make informed decisions about pricing and market position through intelligent use of the information.

- ✓ Briana Brownell also admits AI's key role in operations optimization.
- ✓ "I see many chances! For instance, optimizing operations including adding, changing, or removing routes, setting flight times, pricing, and product offerings.
- ✓ Achievement is driven by having a deep understanding of various customer segments and where new business opportunities exist."

Name: Yuvanesh N

DEPARTMENT OF ECE

INTERNET OF THINGS (IoT)

An Overview:

IoT systems allow users to achieve deeper automation, analysis, and integration within a system. They improve the reach of these areas and their accuracy. IoT utilizes existing and emerging technology for sensing, networking, and robotics.

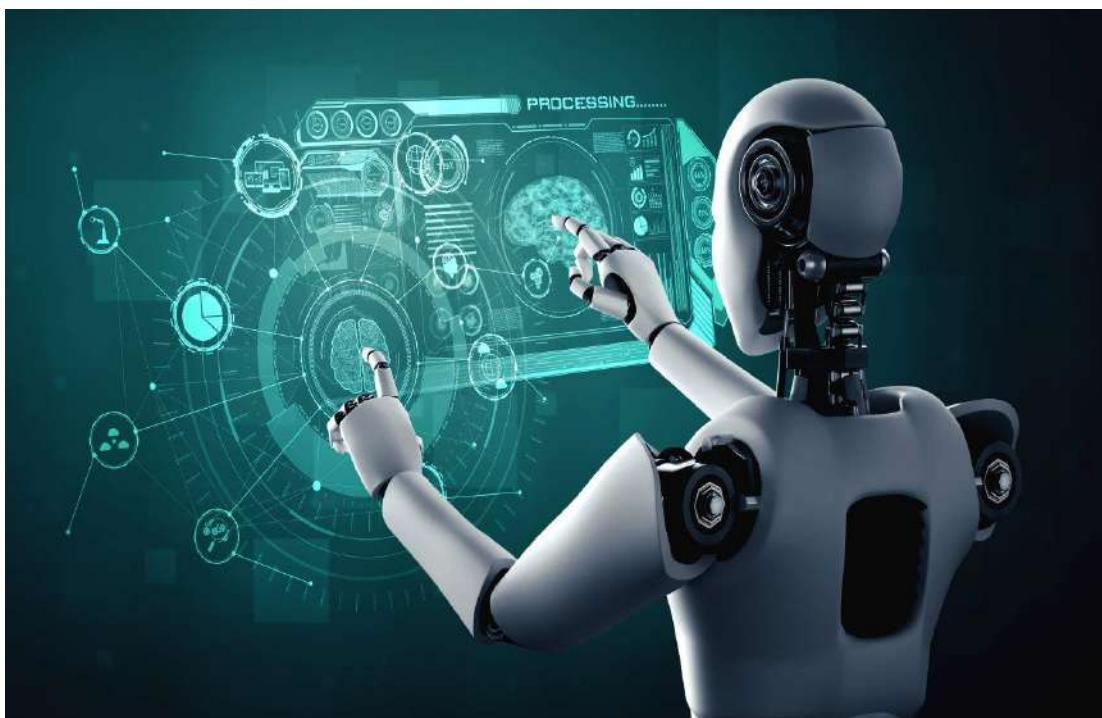
IoT exploits recent advances in software, falling hardware prices, and modern attitudes towards technology. Its new and advanced elements bring major changes in the delivery of products, goods, and services; and the social, economic, and political impact of those changes.

INTRODUCTION - HISTORICAL BACKGROUND OF LOT

INTERNET of Things (IoT) also known as the Internet of Objects is a foundation for connecting things, sensors, actuators, and other smart technologies, thus enabling person-to-object and object-to-object communications. an integrated part of the future internet and could be defined a dynamic global network infrastructure with mobile configuring capability based on standard and interoperable communication protocols where physical and vital thang have leas ties, physical ate buts, virtual personalities, use intelligent interfaces and are seamlessly integrated into information network Based on the traditional information carriers including the mobile communication network, IoT is a network that interconnects ordinary physical objects with the identifiable addresses that provides intelligent services. It is the next revolution after the great hit of the imams that brought a new dimension into the world of Information and Communication Technologies (ICTs).

IOT

The Internet of things describes devices with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communications networks. The Internet of things encompasses electronics, communication and computer science engineering.



Name: TharunPrajin C R

ROBOTIC PROCESS AUTOMATION (RPA)

Robotic process automation (RPA), also known as software robotics, uses [automation](#) technologies to mimic back-office tasks of human workers, such as extracting data, filling in forms, moving files, et cetera. It combines APIs and user interface (UI) interactions to integrate and perform repetitive tasks between enterprise and productivity applications. By deploying scripts which emulate human processes, RPA tools complete autonomous execution of various activities and transactions across unrelated software systems.

This form of automation uses rule-based software to perform business process activities at a high-volume, freeing up human resources to prioritize more complex tasks. RPA enables CIOs and other decision makers to accelerate their digital transformation efforts and generate a higher return on investment (ROI) from their staff.

Less coding:

RPA does not necessarily require a developer to configure; drag-and-drop features in user interfaces make it easier to onboard non-technical staff.

Higher customer satisfaction:

Since bots and chatbots can work around the clock, they can reduce wait times for customers, leading to higher rates of customer satisfaction.

Name: Vignesh K

ORGANIC ELECTRONICS

Organic electronics refers to a field of technology that utilizes organic materials, which are carbon-based compounds, as the building blocks for electronic devices. These materials possess unique properties that enable their integration into a variety of applications, including displays, solar cells, sensors, and more.

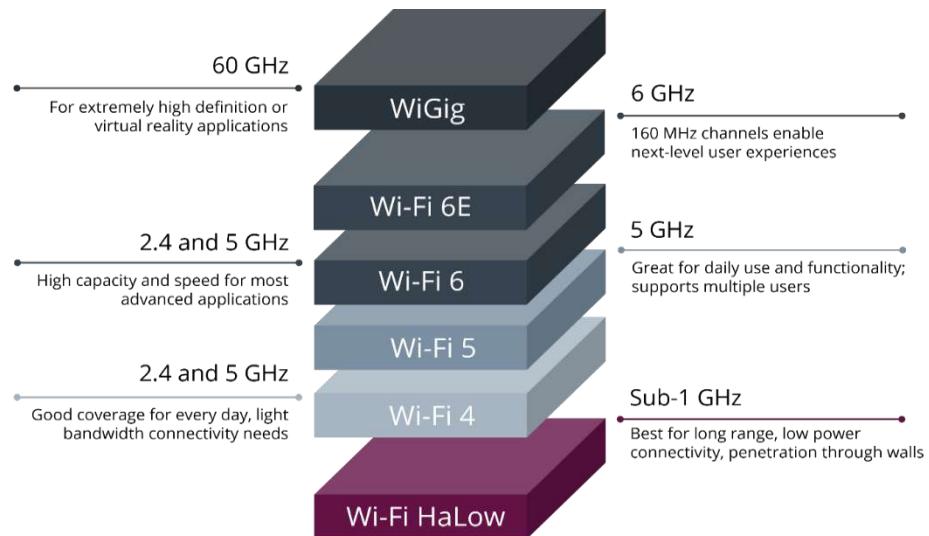
Conventional electronics rely on inorganic materials like silicon to conduct electrical currents. However, organic electronics harness the semiconducting properties of certain organic compounds to achieve similar functions. Organic materials can be processed at relatively low temperatures and can be fabricated on flexible substrates, leading to the development of flexible and lightweight electronic devices.

One of the most notable applications of organic electronics is in organic light-emitting diodes (OLEDs), which are used in high-quality displays and lighting solutions. These displays offer vibrant colors, high contrast ratios, and flexibility. Organic solar cells are another crucial aspect, offering the potential for low-cost and flexible solar energy harvesting. Additionally, organic sensors find applications in healthcare and environmental monitoring due to their compatibility with biological systems and the ability to detect various substances.

Research in organic electronics continues to push the boundaries of what's possible in terms of energy efficiency, device flexibility, and diverse applications. As this field evolves, it holds promise for revolutionizing how we interact with and integrate electronic technology into our daily lives.

Name: Pradeepika M

Department: ECE


WIGIG TECHNOLOGY

WiGig technology is a new wireless standard that allows devices to communicate at very high speeds over short distances. It is based on the IEEE 802.11ad and 802.11ay protocols, which use the 60 GHz frequency band. WiGig can offer data transfer rates up to 7 Gbps for 802.11ad and up to 40 Gbps for 802.11ay, which are much faster than the current Wi-Fi standard.

WiGig technology has many potential applications, such as wireless docking, virtual reality, augmented reality, video streaming, gaming, and data backup. WiGig can enable high performance wireless data, display and audio applications that supplement the capabilities of previous wireless LAN devices. For example, WiGig can be used to connect a laptop to a monitor or a projector without any cables, or to stream high-definition video from a smartphone to a TV. WiGig can also be used to create wireless networks between devices in the same room, such as a wireless mesh network.

However, WiGig technology also has some limitations, such as its short range and poor penetration through walls and other obstacles. The 60 GHz frequency is less congested than the 2.4 GHz or 5 GHz frequencies used by Wi-Fi, but it also has more attenuation and reflection by the air and objects in the environment¹.

This means that WiGig signals can only travel up to 10 meters for 802.11ad and up to 100 meters for 802.11ay, and they can be easily blocked by walls, furniture, or even people. To overcome this challenge, WiGig devices use beamforming technology to direct the radio signals towards the intended receiver, and they can also switch to lower frequencies when necessary to maintain compatibility with existing Wi-Fi devices

WiGig technology is still evolving and improving, and it is expected to become more widely available and adopted in the near future. The Wi-Fi Alliance launched the certification program for WiGig products in 2016, and the IEEE published the 802.11ay standard in 2021. Some of the products that already support WiGig technology include laptops, smartphones, routers, adapters, docking stations, VR headsets, and wireless HDMI devices.

Name: Dharani C K

Department: ECE

UNLOCKING INSIGHTS THROUGH DATA VISUALIZATION

In today's data-saturated world, data visualization stands as a vital tool for decoding complexity and fostering better decision-making. At its core, data visualization transforms intricate data sets into easily digestible visual formats, ranging from bar charts and heat maps to interactive dashboards.

This artful translation allows individuals and organizations to unlock valuable insights that might otherwise remain hidden in rows of numbers.

The significance of data visualization is manifold. It empowers professionals across various fields, from business analysts deciphering market trends to epidemiologists tracking disease outbreaks. It bridges the gap between raw data and understanding, providing clarity through visual narratives.

In the realm of data visualization, a rich tapestry of tools and techniques awaits. Beginners can embrace user-friendly platforms like Tableau or Google Data Studio, while experts might harness the flexibility of Python libraries like Matplotlib or advanced solutions such as Power BI.

The artistry of data visualization extends beyond selecting the right tool; it involves the craft of storytelling through visuals, choosing the right chart type, color schemes, and ensuring data accuracy.

As data privacy and ethics take center stage, responsible data handling is paramount. Ethical considerations guide data professionals in presenting information transparently, free from biases or misrepresentations.

The future of data visualization promises greater interactivity and real-time insights, driven by emerging technologies like augmented reality and machine learning.

Name: Shalini E

WIRELESS SENSOR NETWORK

A wireless sensor network (WSN) is a network of interconnected sensor nodes that communicate wirelessly to monitor and collect data from the surrounding environment.

Each sensor node is equipped with sensing, processing, and communication capabilities. These networks find applications in diverse fields such as environmental monitoring, healthcare, industrial automation, and smart agriculture.

WSNs offer several advantages, including flexibility in deployment, reduced installation costs, and the ability to monitor remote or hard-to-reach areas. They can collect data such as temperature, humidity, light, pressure, and motion, transmitting it to a central location for analysis.

The data obtained from WSNs can be used for real-time decision-making, predictive analytics, and enhancing process efficiency.

However, WSNs also face challenges like limited power resources, communication range constraints, and data security concerns. Researchers are continually working to improve the energy efficiency of sensor nodes, develop reliable routing protocols, and implement robust encryption techniques to address these issues.

As the Internet of Things (IoT) continues to expand, wireless sensor networks play a crucial role in enabling the connection and communication of various devices, contributing to a more interconnected and data-rich world.

Name: Sangaragomathi S

Department: ECE

USING A GSM MODULE WITH AN ARDUINO

Using a GSM module with an Arduino allows you to add cellular communication to your Arduino projects. Here are the basic steps to get started:

- 1. Select a GSM Module:** Choose a GSM module compatible with Arduino, such as the SIM800 or SIM900 series. Ensure it supports the cellular network bands in your region.
- 2. Connect Hardware:** Connect the GSM module to your Arduino using jumper wires. Typically, you'll need to connect pins for power, ground, TX, RX, and sometimes additional pins for control.
- 3. Install Libraries:** In the Arduino IDE, install the necessary libraries for your GSM module. These libraries provide functions to control the module and send/receive SMS messages or make calls.
- 4. Write Arduino Code:** Write Arduino code to initialize the GSM module, establish a connection with the cellular network, and perform tasks like sending SMS messages or making calls. The code will depend on your specific module and the functionality you want.
- 5. Test and Debug:** Upload the code to your Arduino and test your project. Use the serial monitor for debugging and monitoring messages from the GSM module.
- 6. Power Supply:** Ensure your project has a stable power supply since GSM modules can draw significant current during transmission.

Name: Abhirami devi K R

Department: ECE

AUTOMATION

Relay logic was introduced with factory [electrification](#), which underwent rapid adaption from 1900 through the 1920s. Central electric power stations were also undergoing rapid growth and the operation of new high-boilers, steam turbines and electrical substations created a large demand for instruments and controls. Central control rooms became common in the 1920s, but as late as the early 1930s, most process controls were on-off. Operators typically monitored charts drawn by recorders that plotted data from instruments. To make corrections, operators manually opened or closed valves or turned switches on or off. Control rooms also used color-coded lights to send signals to workers in the plant to manually make certain changes.

The development of the electronic amplifier during the 1920s, which was important for long-distance telephony, required a higher signal-to-noise ratio, which was solved by negative feedback noise cancellation. This and other telephony applications contributed to the control theory. In the 1940s and 1950s, German mathematician [Irmgard Flügge-Lotz](#) developed the theory of discontinuous automatic controls, which found military applications during the [Second World War](#) to [fire control systems](#) and aircraft [navigation systems](#).

The First and Second World Wars saw major advancements in the field of [mass communication](#) and [signal processing](#). Other key advances in automatic controls include [differential equations](#), [stability theory](#) and [system theory](#)(1938), [frequency domain analysis](#)(1940), [ship control](#)(1950), and [stochastic analysis](#)(1941)

Name: Dhanush K

Department of ECE

CHANDRAYAAN-3

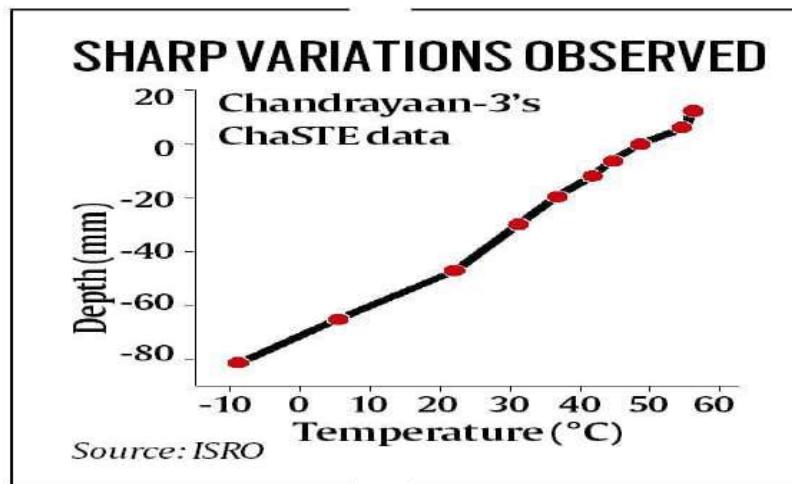
August 23, 2023

'I reached my destination and you too!': Chandrayaan-3

Chandrayaan-3 has successfully soft-landed on the moon. Congratulations, India!

August 28, 2023

LIBS confirms the presence of Sulphur (S) on the lunar surface through unambiguous in-situ measurements. Chandrayaan-3's Pragyan Rover Finds Oxygen, Sulphur, And Other Elements On The Moon.


August 30, 2023

APXS on-board Ch-3 rover detects the presence of minor elements

August 31, 2023

ILSA listens to the movements around the landing site

RAMBHA-LP on-board Chandrayaan-3 measures near-surface plasma content

"The Chandrayaan-3 mission makes India the first country to reach the lunar south polar region in one piece and adds to the achievements of the country's homegrown space programme".

Name: Srinivasan V

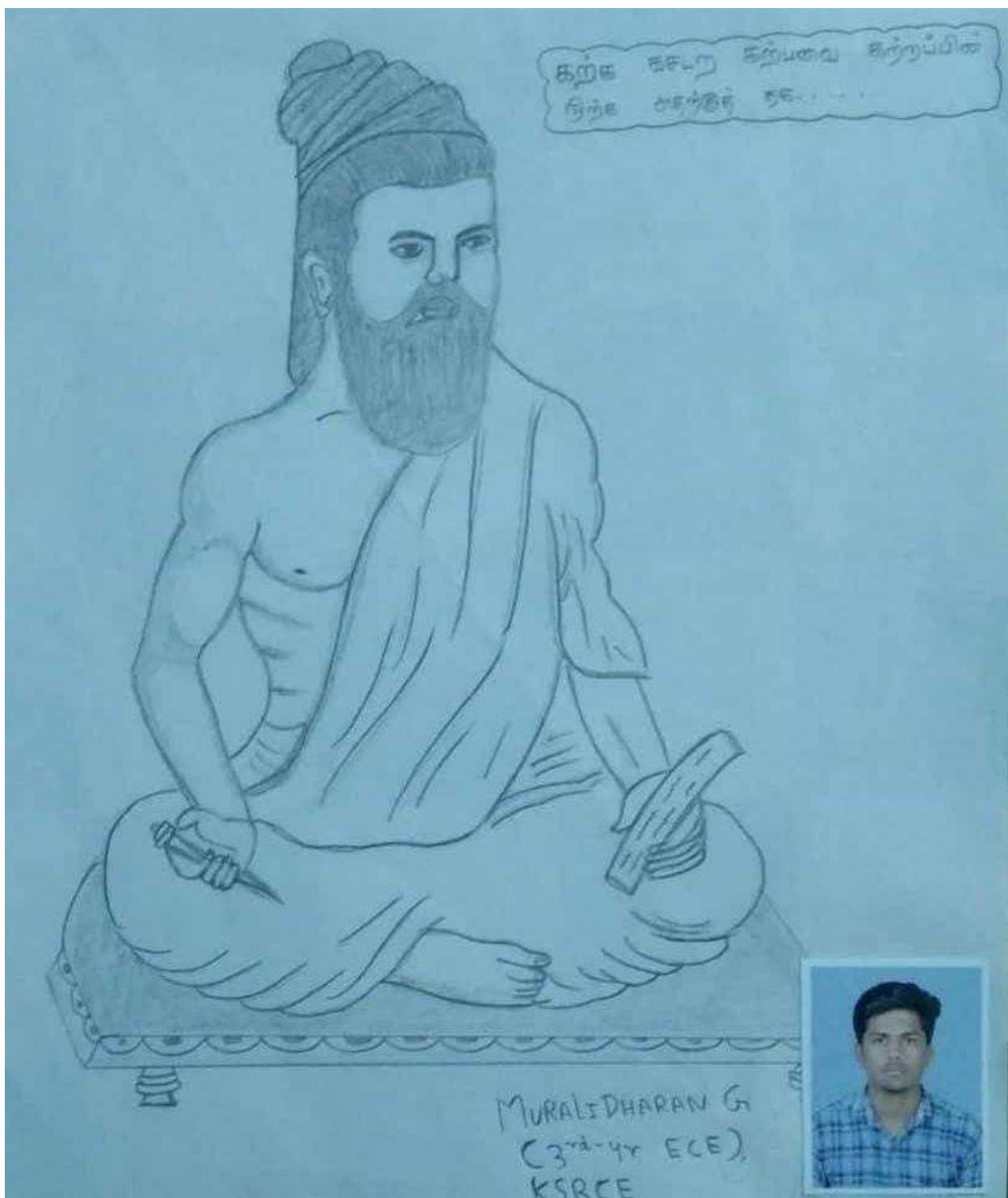
Department: ECE

GREEN COMMUNICATION

Green communication, often referred to as eco-friendly or sustainable communication, involves adopting practices that minimize the environmental impact of communication technologies and processes. It encompasses various strategies to reduce energy consumption, electronic waste, and carbon emissions associated with communication activities.

One aspect of green communication involves optimizing data centers and network infrastructures to be more energy-efficient, using renewable energy sources, and adopting advanced cooling techniques to lower electricity consumption. Another approach is promoting digital literacy and responsible usage to reduce the demand for excessive data and energy-intensive applications.

Recycling and proper disposal of electronic devices, such as smartphones and computers, play a crucial role in reducing electronic waste. Additionally, encouraging virtual meetings and telecommuting can decrease the need for travel, cutting down on transportation-related emissions.


In essence, green communication aims to strike a balance between technological advancement and environmental conservation. By incorporating sustainable practices into communication technologies and behaviors, we can contribute to a healthier planet and a more sustainable future.

Name: Meithiru Prakash B

— — —

THE GREAT SANGAM POET

Toshiro Hitsugaya

DEEPAK D
III-YEAR
ECE-'A'